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A simple flashing ratchet model in two dimensions is proposed to simulate the hand-over-hand motion of
two head molecular motors such as kinesin. Extensive Langevin simulations of the model are performed. Good
qualitative agreement with the expected behavior is observed. We discuss different regimes of motion and
efficiency depending on model parameters.
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I. INTRODUCTION

The dynamics of molecular motors is an important topic
in biophysics and nanotechnology. In the living and in the
artificial nanoscale world fast nondiffusive directed transport
or rotary motion constitute key ingredients of any complex
structure. Molecular motors are the “nanomachines” which
perform these tasks �1–4�. This definition involves a consid-
erable amount of different molecules: Motor proteins, such
as myosin and kinesin, RNA polymerases, topoisomerases,
etc.

In this paper we focus on the problem of directed motion
over a substrate which is exemplified in the kinesin �5,6�.
Active transport in eukaryotic cells is driven by complex
proteins such as kinesin which moves cargo inside cells
away from the nucleus along microtubules transforming
chemical fuel �the adenosine triphosphate molecule, ATP�
into mechanical work. Kinesin is a two head protein linked
by a domain �neck� and a tail which attach a cargo or vesicle
to be carried. The two heads perform a processive walk over
the substrate �the microtubule�. The way in which this pro-
cess is performed attracts big interest in the research in mo-
lecular biology as well as in biological physics. In order to
understand how kinesin works, two properties that arise from
the structure �4,7� of the microtubules cannot be forgotten:
They have a regular, periodic structure and structural
polarity—they are asymmetric with respect to their two ends,
which determines the direction of kinesin motion.

In the last 15 years, experimental molecular biology has
provided a lot of new results which allows us to elucidate, at
mesoscopic level, the main mechanisms for directed trans-
port. These experimental evidences are mostly based on
single molecule experiments �8,9�. The interpretation of
these results is not always easy and many times are not con-
clusive on the detailed way in which the motor walks. Two
basic mechanisms have been proposed to explain the kinesin
motion, “inchworm” and “hand-over-hand” motion �see Fig.
1�. In the first case, one head does not overcome the other
one. In this case the period of the motion is one period of the
microtubule structure �l0 in the figure�. In the hand-over-
hand mechanism one head overcomes the other. Now the
period for each head is the double �2l0�. In both cases the
center of masses advances by the same length. Although first
single molecule experiments were compatible with both

mechanisms more recent experiments have shown �10–13� in
a very clever way that hand-over-hand motion may be more
plausible.

Two strategies can be devised in order to model the mo-
tion of molecular motors �14,15�. On the one hand, continu-
ous models based on mirror symmetry breaking potentials
�ratchet potentials �16�� or time symmetry broken driven
forces �17�. On the other hand, discrete kinetics models
which are based on the solution of master equations associ-
ated to different states of the motor �see �14�, and references
therein�. By using either approximation, both mechanisms
have been studied, inchworm �18,19� and hand-over-hand
�20–23�.

In this work we study a minimalist mechanical continuous
model for hand-over-hand motion that, we believe, captures
the main features of biological motors. The model also takes
into account the properties of the microtubule substrate. The
paper is organized as follows: First we cast a two-
dimensional �2D� model which can mimic the motion of the
motor. Within reasonable values of parameters we explore
different regimes of motion. In the conclusions section we
will discuss the validity of the results to model a molecular
motor.

II. 2D MODEL

In order to find a suitable model for the kinesin motor, its
properties shall be studied carefully. Reference �5� summa-

FIG. 1. �Color online� Schematic representation of the possible
mechanisms of motion for the motor of kinesin. In the hand-over-
hand case each head moves a distance equal to 2l0 whereas in the
inchworm the period of motion is l0.
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rizes all these features: Kinesin is a two-head protein which
moves along the microtubule with 8.3 nm steps, matching
the repeat distance of the microtubule lattice; each step needs
1 ATP which is hydrolyzed and the movement stalls when a
backward load of 7 pN is applied. Experiments reported in
�10� show, by marking one of the heads, that the motion
follows the hand-over-hand mechanism, as a 16.6 nm step is
observed for each head, thus forbidding the movement pro-
posed in the inchworm mechanism.

The description of the movement is rather simple: The
two heads of the kinesin are attached to the microtubule �24�
in two neighbor monomers until 1 ATP molecule is hydro-
lyzed by the head backward. This energy frees the head,
which moves to a new binding place ahead of the other one.
Two complementary mechanisms to understand how the par-
ticle released is able to find the next binding site have been
proposed �5,25�: �a� The neck linker mechanism assumes a
conformational change in the neck between heads which
moves the free head from one place to the next forward. �b�
The diffusional search relies on the assumption that the noise
associated to the thermal bath that surrounds the particle
makes the free particle move, and this movement is prefer-
ably forward and forced by the particle ahead which is at-
tached to the microtubule.

Thermal fluctuations play a central role in the whole pro-
cess. In the nanometer-length dimension and at room tem-
perature, motion is governed by randomness induced by the
environment �in this case the cytosol, made up mainly by
water�. At this scale, damping and thermal noise are domi-
nant, and the dynamics can be studied by an overdamped
Langevin equation

�
dr

dt
= − �V�r� + F�r,t� + ��t� . �1�

Here F stands for external forces and � for thermal noise,
being

�� j�t��k�t��� = 2�kBT��t − t��� jk �2�

�� j and �k are Cartesian components of the vector ��.

A. Energy potentials

We will model the kinesin as two interacting particles
moving in the plane under the effect of flashing ratchet sub-
strate potentials �two particles moving in two dimensions�.

The potential energy of the system is given by

V�r1,r2� = V1�r1,t� + V2�r2,t� + V12�r1 − r2� . �3�

The two heads of the kinesin are linked through a modified
version of the finite extensible nonlinear elastic interaction
�26�:

V12�r� = −
1

2
KR0

2 ln�1 −
�r − l0�2

R0
2 � , �4�

with r= 	r1−r2	, K is the stiffness of the neck, l0 is the equi-
librium distance between heads, and R0 determines a maxi-
mum allowed separation, l0−R0�r� l0+R0.

With respect to the substrate potentials, in order to model
the characteristics observed, two periodic flashing ratchet po-

tentials lagged by one-half of a period in the x direction will
be used,

Vj�r,t� = Vj�r�f j�t� , �5�

j=1,2, and in the x direction the potentials are periodic with
period 2l0, and V2 is displaced l0, the period of the microtu-
bule lattice �27�, with respect to V1,

V1�r + 2l0x̂� = V1�r� = V2�r + l0x̂� . �6�

The mathematical description of the 2D potential associated
to particle 1 �see Fig. 2� is the following:

V1�x,y� = V1x�x� + V1y�y� �7�

with

V1x�x� = 

x

xM
V0 if 0 � x � xM ,

2l0 − x

2l0 − xM
V0 if xM � x � 2l0.� �8�

xM controls the asymmetry of the potential and if xM = l0 the
potential is symmetric.

In order to confine the particles in the microtubule chan-
nel, with respect to the y direction we choose a simple para-
bolic dependence

V1y�y� =
1

2
kyy

2. �9�

We still must define f j�t�. The idea is to reproduce a cyclic
motion. Such a cycle has four steps, see Fig. 3. First �t=0�
both particles are confined close to the minima of their re-
spective potentials and thus separated by an averaged dis-
tance l0 �the natural length of the neck�. After a given time
ton some energy arrives at particle 1 for instance which does
not see its substrate potential for a time toff. During this time
this particle suffers a thermal diffusion only subjected to the
interaction with the other particle. When V1 is switched on
again at t= ton+ toff, the particle slides down toward some
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FIG. 2. �Color online� Surface plot of the 2D substrate potential
V1. Minima correspond to x̃=2n �n=0, �1, . . .� and ỹ=0.
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minimum energy position. This step lasts another ton time
and then at t=2ton+ toff, V2 is switched off for a toff time
closing the cycle. The total period of this cycle is T=2ton
+2toff. As we will see, thanks to the asymmetric character of
the potential a directed motion is obtained.

In order to compute the efficiency of the motion we define
an efficiency parameter given by

� =
�	x1�

2l0

 100, �10�

where �	x1� is the average advance of particle 1 �for in-
stance� per cycle of the potential. Note that our definition of
efficiency is basically the velocity of the motion, in fact the
mean velocity can be computed as vmean= �

100 
2l0 / �ton

+ toff� and is not related to the input of energy and the output
of work.

The important parameter here is toff, the time a particle
has for the diffusive motion. ton only requires being long
enough to allow for relaxation toward a minimum, which in
overdamped dynamics happens very fast. Thus, in our simu-
lations we have played with different values of toff and set
ton= toff. This value corresponds to a duty ratio r= ton / �ton

+ toff�=0.5 which guarantees the processivity of the motion
�4,15�.

B. Normalization

We will measure distance in units of l0=8.3 nm, the dis-
tance between monomers in the microtubule, see also �27�.
Energy is measured in units of V0, the maximum value of the
substrate potential. We choose V0�EATP�20 kBT �at 300 K�
�28,31�. The natural unit of time will be �= l0

2� /V0�40 ns.
Here, � is the damping coefficient used in the Langevin
equation ��=6�
r=4.7
10−11 kg/s, with 
=10−3 Pa the
viscosity of the water and r=25 Å the size of the head�.

We will now use the overtilde symbol for normalized
variables as

x̃ =
x

l0
, t̃ =

t

�
, Ṽ =

V

V0
,

T̃ =
kBT

V0
, and Q̃ =

l0Q

V0
. �11�

III. RESULTS

We are going to present our results based in the numerical
integration of the normalized system of equations for the two
particles. The integration algorithm we use is a version of the
Runge-Kutta algorithm for integration of stochastic differen-
tial equations �3O4S2G� �29,30�. With respect to the different
constants and parameters, unless extra information is given,

the default normalized parameters will be T̃=0.05 �300 K�,
t̃off= t̃on=20, K̃=10, k̃y =1, R̃0=0.4, and x̃M =0.5.

A. Dynamics of the system

Figure 4 shows a typical example of the dynamics of the
system at the parameter values listed above. There we can
see that simulations reproduce the expected mechanism, a
hand-over-hand net advance of the molecule. Middle figure
shows a detail of the top one.

If both potentials are on, the particles do random motions
around the minimum potential energy position. However, as
one of the potentials is turned off, its linked particle starts to
diffuse in two dimensions. The importance of the asymmetric
mechanism is fully understood here. After toff, when the po-
tential is turned on again, most of the time the particle is
sited to the right-hand side of the maximum of the asymmet-
ric potential and then typically moves down to the nearest
minimum position. As we have said, due to the asymmetry of
the potential, this minimum more frequently corresponds to
the one to the right-hand side of the original one. Clearly, the
more asymmetric the potential is, the more likely the system
moves forward.

In the third graph of Fig. 4 we show the trajectories of the
particles in phase space. The distance between heads moves
around the rest distance l0. Motion in the x direction happens
usually when one of the substrate potentials is off. Otherwise
particles stay most of the time close to minimum energy
position.

B. Efficiency as a function of toff and T

A first estimation of the time needed for a particle to reach
the next minimum can be easily worked out by using the 2D
diffusion equation for the particle probability distribution
p�� , t�,

�p

�t
= D�2p . �12�

Writing �12� in polar coordinates and assuming that the dis-
tance between heads r is constant the equation reads as

�p

�t
=

D

r2� �2p

�r2 +
1

r

�p

�r
+

�2p

��2�
r=const

=
D

r2

�2p

��2 . �13�

This equation can be solved �making Fourier transformation
for instance� with appropriated initial conditions

	p��,t�	t=0 = ���� �14�

to give the normalized p�� , t�,

V

V

1 2V V2

2V11
V

FIG. 3. �Color online� Time sequence for the flashing ratchet
substrate potentials. Each potential acts on a different particle. Note
that this potential follows the sequence of attach-detach shown in
the hand-over-hand motion, Fig. 1.
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p��,t� =
r

2
�Dt
exp�− r2�2

4Dt
� , �15�

from this result the mean angle reached at time t is given by

��2� =
2Dt

r2 =
2kBTt

�r2 , �16�

where we have used the Stokes-Einstein relation

D =
kBT

�
. �17�

Let �M be the angle where the maximum of the potential is
placed which is determined by the x position of that maxi-
mum, xM. If the particle is at the x position less than xM when
the potential turns on, it will return to its original position.
However, if x�xM the particle will move forward. Assuming
that the position of the maximum is placed at x̃M =0.5, and
r̃=1 we obtain �M =� /3. Figure 5 shows the time evolution
of the probability distribution �projected on the x axis�. It is
clearly observed that as time passes the probability of finding
that a particle crosses the maximum xM increases. The time
in which the probability for crossing is 1/2 is simply given
by

t = 0.674
r2�M

2 �

2kBT
. �18�

With the values given above the adimensional time �for tem-

perature T̃=0.05� is t̃�16. For this toff time the efficiency of
the motor is one-half of the maximum one, which is fixed by
xM �see below�.

Finally we analyze the behavior of the efficiency with
temperature, Fig. 6. For low temperatures we need long toff
times to reach a reasonable efficiency as expected from Eq.
�18�, so we do not reach in our simulations the asymptotic

limit. For intermediate temperatures T̃=0.03–0.05 the high-
est efficiency is achieved. Moreover, in the limit of high
temperatures compared to the 2D potential and long toff, the
efficiency starts to fall, as backward movement is more
likely to occur �the free particle can drag the confined one�.

C. Efficiency at different asymmetries

Here we present results on the behavior of the system as
the asymmetry of the potential changes, being xM the param-
eter that controls it �xM fixes the position of the maximum in
the period 2l0 periodic potential, so x̃M =1 corresponds to the
symmetric case�. At a given toff time, efficiency depends im-
portantly on this parameter. The mechanism will be ineffi-

(a)

(b)

(c)

FIG. 4. x̃�t̃� for the two particles �top and middle� and trajectory
in the x̃-ỹ plane �bottom�. The middle figure also shows the flashing
dynamics of the substrate potentials �the base lines correspond to
the on periods�.

FIG. 5. x-axis projection, at different normalized times t̃, of the
diffusion of a particle attached to the other, fixed at �1,0�, when no

substrate potential is being applied. Data obtained at T̃=0.05.
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cient for a symmetric potential and the largest efficiency will
be obtained for the more asymmetric one.

Figure 7 shows the numerical simulation of the efficiency
as a function of toff for different values of xM. As we reduce
the asymmetry the efficiency tends to zero, as shown in the
x̃M =1.0 line, which corresponds to a symmetric potential. On
the other hand, the efficiency of the mechanism increases as
we make the potential more asymmetric. In all the cases,
when we increase toff the efficiency grows from zero and
saturates at its maximum value for long enough values of
this parameter.

D. Dynamics under external loads

In this section we want to explore the experimental results
reported in Ref. �5�, where backward stepping was observed
when using high backward loads. Then, it is worth studying
how the system behaves under the effect of an external force.

To model the effect of such a load is not trivial. We must
decide how the total load Q is divided into the two heads of
the protein. It seems obvious that a head can make an oppo-
site force to the applied only in the case when it is fixed to
the microtubule. Therefore, the following mechanism is pro-

posed: If there is only one head with its potential switched
on, it will bear the whole opposite load. On the other hand, if
both heads have their potential on, everyone will bear a force
Q /2.

The expected behavior of the system is the following: As
one potential turns off, it’s associated head starts diffusing.
The other particle feels a force Q which doubles the previous
Q /2. Therefore, if that force is strong enough, the particle
starts climbing the potential slope. The asymmetric potential
plays again an important role: If the external force is posi-
tive, the particle faces the sharpest slope of the potential, so
a larger force than in the negative case is needed.

Figure 8 shows the relationship between external load and
toff. The most important characteristic is the value of the load
for which the system does not move, 0 efficiency. For nega-
tive loads, as toff shortens, the particle needs greater forces to
start to move backward. On the other hand, when long times
are employed, the mechanism seems to reach a limit around

Q̃=−0.5.
We have also studied the effect of the temperature in the

mechanism. Results are shown in Fig. 9, where efficiency
versus external load for a given value of t̃off=20 is plotted at
different temperatures. An almost linear relation between
critical load and temperature is obtained in this range.

FIG. 6. Efficiency as a function of t̃off for different normalized

temperatures T̃.

FIG. 7. Efficiency as a function of t̃off at different positions of
the maximum x̃M. When x̃M =1.0, the potential becomes symmetric
and no rectified movement is observed.

FIG. 8. Efficiency as a function of the external load applied, Q̃.
Each line refers to a different t̃off.

FIG. 9. Efficiency as a function of the external load applied Q̃,

for different normalized temperatures T̃.
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E. Varying the natural length of the neck

Up to now we have studied the case where the two space
lengths of the system, the distance between monomers in the
microtubule and the natural length of the neck, are equal
�both are l0�. In this section we have extended our work to
the study of the case when the natural distance between the
heads is different from the spatial unit, fixed by the distance
between monomers in the microtubule. Then, in our model,
l0 need to be replaced by l0� in Eq. �4�.

Figure 10 is clear enough to provide strong evidence
about the striking behavior observed as the natural length of
the neck tends to 0: 100% efficiency is achieved. This almost
deterministic mechanism can be understood with the help of
Fig. 11 and presents three steps: �a� We start with one par-
ticle sited in a minimum of the potential and the other one
ahead �it feels a small force since the potential slope there is
also small�. �b� As the first potential disappears, the second
particle moves to its minimum, dragging the other one. �c�
Now the potential turns on, thus making the first particle to
move ahead and we recover a situation equivalent to step �a�.

Figure 12 shows results at different temperatures. First,
the deterministic T=0 limit must be carefully explained. In
this limit, there are only two possible values for the effi-

ciency: 0%, associated to the range l̃0�� �0.5,1.5�, and 100%

for l̃0�� �0.0,0.5�� �1.5,2.0�. These two regions can be fully
explained using the mechanism described above. In the 0%
case, switching off one of the potentials will make the other
particle move to a minimum, but it will not be the minimum
ahead which would not produce a net movement forward.

There is just one parameter left to be discussed, which is
the stiffness of the linker between heads of the motor. The
study of the efficiency as a function of l0� at different values

of K is shown in Fig. 13. For l̃0��0.5, the stiffness of the
neck determines whether the particles prefer to be in their
minimums no matter how far they are, or in an intermediate
position, as plotted in Fig. 11�a�.

IV. CONCLUDING REMARKS

We have studied a simple mechanical model for hand-
over-hand motion in two dimensions. This model has taken
into account some important characteristics of the two heads
biological motor as kinesin. These characteristics are incor-
porated in the model in a simple but realistic way. The hand-
over-hand mechanism requires a two-dimensional space.

FIG. 10. Efficiency as a function of the natural length of the

neck, l̃0�, for different values of t̃off.

FIG. 11. �Color online� Schematic explanation of the almost
deterministic motion observed when l0� is close to zero.

FIG. 12. Efficiency versus l̃0� for different temperatures, T̃.

FIG. 13. Efficiency versus l̃0� for different values of K̃.
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Unidirectionality is given by the ratchet potential in the ad-
vance direction. The balance between on and off times con-
trols the efficiency and processivity of the motion. With all
of these ingredients we have been able to simulate the most
remarkable features of kinesin motion within reasonable val-
ues of the parameters. Specifically, we have clearly observed
a stochastic directed motion in which particles alternate with
each other �hand over hand�. Moreover, a strong dependence
of the stall force with off time and temperature has been
found. Temperature makes a decrease of stall force with re-
spect to one expected from energetic calculations. This de-
crease in the motor efficiency agrees with experimental ob-
servations �5,14�.

Several improvements to the model can be considered in
future work. A link between toff and ATP concentration could
be established. This would imply a random flashing force
instead of the periodic one used here. Another interesting
extension of the model could allow the motor to change the

lane in the y axis. This could be easily implemented by using
a periodic potential in the transverse direction.

Finally, we must stress that the characterization of the
behavior and properties of those motors and the mechanisms
behind them is an initial step toward the construction of syn-
thetic nanoscale motors. This is a very active field in the
nanoscience world. There have been some successful
achievements in this field that include triptycene motors �32�,
helicene motors �33� and a nanotube nanomotor �34�. In this
paper, we have shown the conditions for which a nanowalker
can work.
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